跳到主要内容

模型

Frigate+ 提供基于Frigate+用户从安防摄像头提交的图像训练的模型,这些模型专门为Frigate分析视频的方式设计。这些模型能以更少资源提供更高准确性。您上传的图像用于微调一个基于所有Frigate+用户上传图像训练的基础模型,最终得到一个针对您特定环境优化的高精度模型。

信息

订阅后基础模型不会直接可用。未来可能会改变,但目前您需要提交包含最低数量图像的模型请求。

订阅包含每年12次模型训练。取消订阅后,您仍可保留已训练模型的使用权。提交模型请求或购买额外训练需要有效订阅。

集成Frigate+的方法请参阅集成文档

可用模型类型

Frigate+提供两种模型类型:mobiledetyolonas。两者都是目标检测模型,能检测下方列出的相同标签

不是所有检测器都支持所有模型类型,请根据支持的检测器类型表格选择匹配您检测器的模型。

模型类型描述
mobiledet基于与Frigate默认模型相同的架构。可在Google Coral设备和CPU上运行。
yolonas新架构,精度略高且对小目标检测有改进。支持Intel、NVIDIA GPU和AMD GPU。

支持的检测器类型

目前Frigate+模型支持CPU(cpu)、Google Coral(edgetpu)、OpenVino(openvino)和ONNX(onnx)检测器。

注意

Frigate+模型与onnx检测器的配合使用仅限Frigate 0.15及以上版本。

硬件推荐检测器类型推荐模型类型
CPUcpumobiledet
Coral(所有形态)edgetpumobiledet
Intelopenvinoyolonas
NVIDIA GPU*onnxyolonas
AMD ROCm GPU*onnxyolonas

* 需要Frigate 0.15版本

可用标签类型

Frigate+模型支持更适合安防摄像头的对象集。当前支持以下对象:

  • 人物personface
  • 车辆carmotorcyclebicycleboatlicense_plate
  • 快递标识amazonuspsupsfedexdhlan_postpurolatorpostnlnzpostpostnordglsdpd
  • 动物dogcatdeerhorsebirdraccoonfoxbearcowsquirrelgoatrabbit
  • 其他packagewaste_binbbq_grillrobot_lawnmowerumbrella

Frigate默认模型中的其他对象类型暂不支持。未来版本将增加更多对象类型。

标签属性

使用Frigate+模型时,某些标签有特殊处理方式。facelicense_plate及快递标识如amazonupsfedex被视为属性标签,不会像常规对象那样被追踪,也不会直接生成核查项。此外,threshold过滤器对这些标签无效,您需要根据需要调整min_score和其他过滤值。

要启用这些属性标签,需将其添加到追踪对象列表:

objects:
track:
- person
- face
- license_plate
- dog
- cat
- car
- amazon
- fedex
- ups
- package

使用Frigate+模型时,系统会为人物对象选择面部最清晰的快照,为车辆选择车牌最清晰的快照。这有助于面部识别和车牌识别等二次处理。

面部属性示例

快递标识如amazonupsfedex用于自动为车辆对象分配子标签。

Fedex属性示例